9F Quartz

Precision and longevity are the very essence of the ideal timepiece and had always been central to the ideals of Grand Seiko. Caliber 9F was designed to bring these attributes to the quartz watch and it set new standard for quartz in every aspect of its performance.

  • The Instant Date Change Mechanism changes the date display in the blink of an eye.
  • Torque comparable to that of a mechanical movement makes the long and wide hands of Grand Seiko possible.
  • The Backlash Auto-Adjust Mechanism ensures that the seconds hand lands exactly on the marker with no shudder, adding to the precision with which the time can be read.
  • The sealed structure improves the retention of the lubricating oils and prevents any dust entering the movement when the battery is changed.

Caliber 9F redefines the quartz watch, delivering higher performance and greater durability. It is a quartz caliber that truly merits the name Grand Seiko.

A quartz movement depends on a battery as a power source. The battery sends electricity to a quartz oscillator, which vibrates at precisely 32,768 times per second. An integrated circuit (IC) detects these vibrations and sends out an accurate time signal every second to the step motor. The step motor activates in accordance with this time signal, accurately rotating a series of gears and the watch hands.

Changing the date display in the blink of an eye.

The 9F quartz movement utilizes a cam and lever in conjunction with the date indicator driving wheel as part of a feature known as the Instant Date Change Mechanism.

Through this mechanism, the date indicator driving wheel builds tension in the lever spring as it rotates, eventually releasing the stored energy when it reaches the location of the cam and driving the calendar wheel forward in the blink of an eye.

While some mechanical movements possess enough torque to deliver instant date changes, Grand Seiko was the first to pioneer the mechanism in a quartz movement.

The task of aligning the Instant Date Change Mechanism to occur precisely at midnight falls upon Seiko's skilled craftsmen, who painstakingly set the mechanism by hand. In order to ensure that there is no situation in which the change occurs prematurely, the mechanism is set to activate within five minutes of the midnight.

A quartz movement crafted by hand

While the majority of the world's quartz movements are products of automatic assembly, Grand Seiko's 9F quartz caliber is assembled entirely by hand. Two expert craftsmen combine their individual talents to ensure the high quality standard of each Grand Seiko 9F movement, with one assembling the date indicator and the other the rest of the movement.

Assembly and Adjustment

Once the movement is assembled, the dial, markers and hands are attached and the entire movement installed into the case. Attaching the watch hands is perhaps one of the most delicate and precise procedures requiring the supreme skill of an experienced craftsman or woman.

The hour and minute hands are stacked in parallel within a space of just 2mm and fixed in place with the movement axis by frictional force. Only an expert in adjustment can ensure that all hands, a mere 0.2mm apart, operate smoothly without colliding with one another as they rotate.

In order to ensure that no scratch or blemish occurs to the hands during assembly, the Grand Seiko craftsmen and women polish the tips of their pincers several times every day. This is just one example of the painstaking detail involved in the creation of every Caliber 9F watch. It is this craftsmanship and skill that guarantees the quality, performance and beauty of every Grand Seiko quartz watch.

Moving broad Grand Seiko hands with the Twin Pulse Control Motor

Unable to match the high torque of mechanical watches, quartz watches generally make use of lighter and thinner watch hands. Grand Seiko quartz models defy this limitation and the hands have the same length and breadth as on every Grand Seiko mechanical watch. The 9F quartz caliber makes this possible through its Twin Pulse Control Motor, a system capable of turning longer and heavier hands while preserving battery power.

In a normal quartz movement, the seconds hand moves in a single step from one second to the next. In the 9F quartz movement, the seconds hand instead makes two consecutive steps per second, triggered by two successive pulse signals. Increasing the number of pulse signals augments the output torque from the rotor, enabling the use of heavier hour, minute, and seconds hands. This two-step process is undetectable by the naked eye and appears as a single one second step. 

A low-power IC allows temperature control and extended battery life.

The 9F quartz movement goes beyond the quartz standard in temperature control as well, with an extremely low-power temperature correction system. Most standard quartz watches do not employ a temperature control program. Because a significant amount of electrical power is required to operate a temperature control system, quartz watches utilizing the technology face a trade off in battery life. The extremely low power consumption of the temperature control system used in the 9F quartz movement successfully solves this problem. Combined with the low-drain Twin-Pulse Control System for the hands, this temperature control system allows a battery life of three years.

Precise second hand movement with the Backlash Auto-Adjust Mechanism

Watch hands are driven by a series of gears, and there is always a certain amount of play, or backlash, between the teeth that engage each wheel with the next. Although this backlash allows the gears to rotate smoothly, it is also responsible for the slight shuddering of the second hand, an imprecision that was unacceptable to the Grand Seiko designers.

To address this, a unique method to enable the precise movement of the seconds hand known as the Backlash Auto-Adjust Mechanism was developed. The mechanism makes use of a hairspring, a core component of mechanical watches. By utilizing the slight spring power afforded by the hairspring, the faint shuddering of the second hand can be stabilized so that the seconds hand advances precisely and with no shudder.

Independent Axis Structure for smooth hand movement

Inadvertent interference between the hour or minute hands and the seconds hand can occur during time adjustments, causing slight shaking in the thinner second hand. Because even the slightest shudder is incompatible with the standards of Grand Seiko, engineers developed a solution known as the Independent Axis Structure to prevent this problem.

A watch’s seconds hand travels around the dial 1,440 times every day while the minute hand completes 24 revolutions. Precise time can only be correctly displayed if there is no interference between these rotating parts.

In the 9F quartz movement, the axis of each hand is allowed to move independently, preventing the hands from brushing each other, eliminating twitching when the time is adjusted, and facilitating smooth and precise movement.

Precise time adjustment

The movement of the crown is another unique facet of the 9F quartz movement.

In standard quartz watches, one full rotation of the crown moves the minute hand the equivalent of 60 minutes. In Caliber 9F, one full rotation of the crown moves the minute hand just 20 minutes, making it possible to adjust the time with greater precision.

The crown itself is also more prominent, with a thickness of 11mm, which ensures that operational mistakes are avoided when switching to the date display.

Adjustment to your environment

Regulation switching for precision control in a quartz movement

While mechanical watches possess a mechanism for fine tuning precision, these controls are impossible in most quartz watches.

The 9F quartz movement, however, features a regulation switch that makes such precision control possible. If, because of environmental conditions or other factors, a Caliber 9F watch ever becomes too fast or slow, the switch can be used to correct for such divergences. Owners who come to know intimately the individual characteristics of their watch over the years can easily adjust the accuracy and enjoy the high precision of their watch for many years even if it is worn in unusually high or low temperatures or other conditions. Given the high accuracy of the 9F quartz movement, +/- 10 seconds a year, most will never need to know this adjustment function even exists.

A protective shield construction for guaranteed quality

Grand Seiko developed its protective shield construction to ensure that the rotor, the heart of the quartz movement, is encased in a highly airtight environment.

This structure prevents dust from entering delicate parts of the movement when the battery is changed and ensures that the lubricating oil reserve for the step motor pivot is sealed from the air, extending the life of the oil.

The protective shield construction is designed to minimize the risk of harm when the case is opened for the battery changes that every quartz movement requires. The wall separating the battery from the gear train to avoid the introduction of foreign particles even contains a peephole studded with a ruby for observation during battery changes.

The 3-month aging process for quartz oscillators

Caliber 9F delivers an exceptional precision rate of ±10 seconds per year. This is made possible by the selection of highly stable quartz crystals that are put through a rigorous aging process.

The accuracy of a quartz watch depends on whether the quartz oscillator can maintain a precise rate of 32,768 oscillations per second.

Despite the overall regularity of this oscillation, each quartz oscillator has different performance characteristics, with some unable to maintain stable performance during the course of long use and changes in the environment. Other oscillators may perform with high precision at first, but undergo change in their oscillation over the years leading to inaccuracy.

Recognizing this, Grand Seiko introduced an aging process for its chosen crystals to ensure that the oscillators stabilize before being used. Grand Seiko was the first watchmaker in the world to utilize quartz oscillators selected through this process.

As part of the process, quartz oscillators made in-house are first 'aged' for three months, during which they are subjected to certain voltages so that their characteristics stabilize. Only then are they tested and selected, and only quartz oscillators that meet strict standards are used in the 9F quartz movement.

Temperature monitoring 540 times a day

Quartz oscillators are susceptible to temperature changes.

The rate of 32,768 oscillations per second fluctuates with changes in ambient temperature.

If this rate changes by even a single vibration per second, accuracy can fall by as much as 16 minutes a year.

To solve this problem, information on the individual characteristics of an oscillator is stored beforehand in the IC. By matching each oscillator with its own individually set IC in this way, 9F movements operate perfectly.

The temperature inside the watch is also measured 540 times a day. The temperature data is transferred to and processed by the IC, which compensates for any deviation that would be detrimental to preserving high accuracy.

History

Grand Seiko began its long history in 1960 with mechanical watches. In 1988, the first quartz Grand Seiko model was born, with a powerful movement with an accuracy rate of ±10 seconds a year. In 1993, Grand Seiko achieved a new standard in quartz watches with the release of the 9F8 series which incorporated new features including the Backlash Auto-Adjust Mechanism, the Twin Pulse Control Motor, and the Instant Date Change Mechanism.

More

Movement Comparison

Movement Accuracy Battery life Features
A Model Featuring a Date Display with GMT Function
Caliber 9F86
±10 seconds per year Approximately 3 years -Instant date change mechanism
-Dual time function with 24-hour hand
-Quick correction function of time difference adjusting to a calendar
A Model Featuring a Date Display
Caliber 9F85
±10 seconds per year Approximately 3 years -Instant date change mechanism
-Quick correction function of time difference adjusting to a calendar
A Model Featuring a Date Display
Caliber 9F62
±10 seconds per year Approximately 3 years -Instant date change mechanism
A Model Featuring without a Date Display
Caliber 9F61
±10 seconds per year Approximately 3 years -